Unconventional Route to Hairy Plasmonic/Semiconductor Core/Shell Nanoparticles with Precisely Controlled Dimensions and Their Use in Solar Energy Conversion
نویسندگان
چکیده
Atom transfer radical polymerization (ATRP) of 4-vinylpyridine, t-butyl acrylate, and styrene in sequential order from a β-cyclodextrin core yielded an amphiphilic starlike triblock copolymer, poly(4-vinylpyridine)-block-poly(tbutyl acrylate)-block-polystyrene (P4VP-b-PtBA-b-PS). Subsequently, star-like triblock copolymer composed of inner hydrophilic P4VP blocks, central hydrophobic PtBA blocks, and outer hydrophobic PS blocks with well-defined molecular architecture and molecular weight of each block was judiciously exploited as nanoreactor for synthesis of precisely shaped hairy plasmonic/semiconductor Au/TiO2 core/shell nanoparticles. The resulting Au/TiO2 nanoparticles were intimately and permanently tethered with outer PS chains that enabled the superior solubility of nanoparticles in nonpolar solvents. The PS chains on the surface of these bifunctional nanoparticles were carbonized by annealing in an inert atmosphere (i.e., yielding carbon-coated Au/TiO2 nanoparticles). In comparison to a widely used TiO2 network film (i.e., P25)-based device, dye-sensitized solar cells assembled by incorporating a thin layer of carbonized Au/TiO2 nanoparticles on the top of P25 film as photoanode exhibited largely improved short-circuit current density, JSC (18.4% increase), and power conversion efficiency, PCE (13.6% increase), respectively. Such improvements were attributed to the surface plasmon-enabled light harvesting enhancement of Au core and fast electron transport promoted by the carbon layer coating on Au/TiO2 nanoparticles, as revealed by external quantum efficiency (EQE), UV−vis spectroscopy, and electrochemical impedance spectroscopy measurements, respectively.
منابع مشابه
Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry
In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...
متن کاملThe influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
Plasmonic core-shell nanoparticles (PCSNPs) can function as nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). To achieve maximum enhancement, the morphology of PCSNPs needs to be optimized. Here we precisely control the morphology of Au@TiO2 PCSNPs and systematically study its influence on the plasmonic enhancement effect. The enhancement mechanism was found to vary...
متن کاملSimple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs
This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...
متن کاملSynthesis and Properties of Magnetic-Optical Core-Shell Nanoparticles.
Due to their high integrity, facile surface chemistry, excellent stability, and dual properties from the core and shell materials, magnetic-plasmonic core-shell nanoparticles are of great interest across a number of science, engineering and biomedical disciplines. They are promising for applications in a broad range of areas including catalysis, energy conversion, biological separation, medical...
متن کاملInfluence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell struc...
متن کامل